logo
Groundwater Modeling Decision Support
Introduction to Theory, Concepts and PEST Mechanic
Initializing search
    • GMDSI Tutorial Notebooks
    • Selected Topics
    • Theory, Concepts and PEST Mechanics
    • Decision Support Modelling
    In-For-Disaster-Analytics/GMDSI_notebooks
    • GMDSI Tutorial Notebooks
    • Selected Topics
      • Intro to Regression
      • Intro to pyEMU
      • Intro to Geostatistics
      • Intro to Bayes
      • Intro to SVD
    • Theory, Concepts and PEST Mechanics
      • Manual Trial-and-Error
      • PEST Basics
      • Automated Calibration with PEST
      • Calibration with Two Parameters
      • Multiple Observation Types
      • GLM and the Objective Function Response Surface
      • Spatial Parameterisation with Pilot Points - setup
      • Spatial Parameterisation with Pilot Points - run
      • Regularization
      • Intro to FOSM
      • Local Sensitivity and Identifiability
      • Global Sensitivity Analysis
      • Monte Carlo
    • Decision Support Modelling
      • Constructing a High-Dimensional PEST Interface with pyEMU
      • Observation Values, Weights and Noise
      • Prior Monte Carlo
      • PEST++GLM - Calculating a Jacobian Matrix
      • FOSM and Data Worth
      • PEST++GLM - Highly- Parameterized Regularized Inversion
      • PEST++IES - Basics
      • PEST++IES - Localization
      • PEST++DA - Getting Ready
      • PEST++DA - Sequential Data Assimilation

    Introduction to Theory, Concepts and PEST Mechanic

    • Manual Trial-and-Error
    • PEST Basics
    • Automated Calibration with PEST
    • Calibration with Two Parameters
    • Multiple Observation Types
    • GLM and the Objective Function Response Surface
    • Spatial Parameterisation with Pilot Points - setup
    • Spatial Parameterisation with Pilot Points - run
    • Regularization
    • Intro to FOSM
    • Local Sensitivity and Identifiability
    • Global Sensitivity Analysis
    • Monte Carlo
    Made with Material for MkDocs
    In-For-Disaster-Analytics/GMDSI_notebooks